Quantitative 177Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system
نویسندگان
چکیده
PURPOSE The combination of single photon emission computed tomography (SPECT) and computer tomography (CT) that incorporates iterative reconstruction algorithms with attenuation and scatter correction should facilitate accurate non-invasive quantitative imaging. Quantitative SPECT (QSPECT) may improve diagnostic ability and could be useful for many applications including dosimetry assessment. Using (177)Lu, we developed a QSPECT method using a commercially available SPECT/CT system. METHODS Serial SPECT of (177)Lu sources (89-12,400 MBq) were acquired with multiple contiguous energy windows along with a co-registered CT, and were reconstructed using an iterative algorithm with attenuation and scatter correction. Camera sensitivity (based on reconstructed SPECT count rate) and dead-time (based on wide-energy spectrum count rate) were resolved by non-linear curve fit. Utilizing these parameters, a SPECT dataset can be converted to a QSPECT dataset allowing quantitation in Becquerels per cubic centimetre or standardized uptake value (SUV). Validation QSPECT/CT studies were performed on a (177)Lu cylindrical phantom (7 studies) and on 5 patients (6 studies) who were administered a therapeutic dose of [(177)Lu]octreotate. RESULTS The QSPECT sensitivity was 1.08 x 10(-5) ± 0.02 x 10(-5) s(-1) Bq(-1). The paralyzing dead-time constant was 0.78 ± 0.03 µs. The measured total activity with QSPECT deviated from the calibrated activity by 5.6 ± 1.9% and 2.6 ± 1.8%, respectively, in phantom and patients. Dead-time count loss up to 11.7% was observed in patient studies. CONCLUSION QSPECT has high accuracy both in our phantom model and in clinical practice following [(177)Lu]octreotate therapy. This has the potential to yield more accurate dosimetry estimates than planar imaging and facilitate therapeutic response assessment. Validating this method with other radionuclides could open the way for many other research and clinical applications.
منابع مشابه
A comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE
Objective(s): To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177LuDOTATATE (Lutate) for treatment of neuroendocrine tumours (NETs). Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after inj...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کاملEvaluation of Four-dimensional (4D) Computed Tomography (CT) Pulmonary Ventilation Imaging by Comparison with Single Photon Emission Computed Tomography (SPECT) Scans for a Lung Cancer Patient
The goal of this study was to present a method for physiologic validation and show results for a comparison of the 4D-CT ventilation and SPECT ventilation or perfusion. A 4D-CT and a SPECT ventilation/perfusion (V/Q) (VSPECT and QSPECT) scans were acquired for a lung cancer patient. Two 4D-CT ventilation images were created using two metrics: Hounsfield unit (HU)-change (V4D-CT) and Jacobian de...
متن کاملDesign and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.
Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and ...
متن کاملThe comparison of serial SPECT-CT imaging to estimate absorbed dose to the organ at risk from peptide receptor radionuclide therapy dosimetry
Introduction: In Peptide Receptor Radionuclide Therapy (PRRT), the administration of radionuclide such as Lu-177 label with a pharmaceutical agent useful to destroy the lesion. The amount of Lu-177 radioactivity administered to the patients is still not standardize and generally not more than 7.4 GBq per session due to the patient’s safety issues. The first cycle of Lu-177 is a...
متن کامل